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Abstract 

We trained three topologies of backpropagation neural networks to discriminate 2000 words (lexical 

representations) presented at different positions of a horizontal letter array. The first topology (zero-deck) 

contains no hidden layer, the second (one-deck) has a single hidden layer, and for the last topology (two-

deck), the task is divided in two subtasks implemented as two stacked neural networks, with explicit word-

centered letters as intermediate representations. All topologies successfully simulated two key benchmark 

phenomena observed in skilled human reading: transposed-letter priming and relative-position priming. 

However, the two-deck topology most accurately simulated the ability to discriminate words from 

nonwords, while containing the fewest connection weights. We analyzed the internal representations after 

training. Zero-deck networks implement a letter-based scheme with a position bias to differentiate 

anagrams. One-deck networks implement a holographic overlap coding in which representations are 

essentially letter-based and words are linear combinations of letters. Two-deck networks also implement 

holographic-coding. 

 

Keywords: reading; orthographic processing; supervised learning; artificial neural networks; 

network coding analysis 

 

1. Introduction 

As they read text, skilled readers of languages that use an alphabetic script must map retinal 

images of letters onto abstract word representations. More specifically, learning to read 

involves the recognition of co-occurring letters as part of larger entities, that is, words. 

Reading also involves an ability to recognize words (strings of co-occurring letters) at various 

locations on the retina
1
, thus achieving location-invariant word recognition. Among the 

proposed models of the complex processing involved in this cognitive task, many posit a 

hierarchical system of increasing invariance, in which simple visual features are gradually 

integrated into more abstract and complex features (e.g., Dehaene, Cohen, Sigman, & 

Vinckier, 2005). For instance, visual features can be combined into representations of letters 

which are dependent on their physical attributes (e.g., font, case and location). Then, gradual 

abstraction from these physical attributes is achieved. High in the hierarchy, abstract (i.e., 

shape-invariant) letter representations are combined in a word-centered position coding 

scheme  (see below) to finally activate location-invariant lexical representations, that is, 

words. 

 

Empirical evidence suggests that location-specific letters do not directly activate lexical 

representations. Instead, evidence coming from a variety of techniques, including masked 

priming, supports the idea that some intermediate level of representation exists between 

letters and words. This intermediate level of sublexical orthographic representation is thought 

to use some form of flexible, word-centered, location-invariant coding of letter position 

information (see Grainger, 2008 for a review). In general, masked priming experiments 

involve manipulating the degree of overlap or agreement between the letters that compose a 

target word and some string of letters used as a prime. Robust priming effects found in skilled 

readers include transposed-letter priming and relative-position priming. The transposed-letter 

priming effect describes the superior priming observed from primes formed by transposing 

two of the target’s letters (e.g., gadren-garden) compared with primes formed by substituting 

                                                      
1
 In other words, independently of where an eye fixation is made on a word. 
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two of the target’s letters (e.g., galsen-garden). The relative-position priming effect describes 

a processing advantage for targets preceded by primes formed of a subset of the target’s 

letters (e.g., grdn-garden) compared with a prime formed of the same subset of letters in the 

wrong order (e.g., gdrn-garden). Quality of priming is generally measured using reaction 

times: better primes yield faster reaction times (typically the time it takes to respond that the 

target stimulus is a word in the so-called lexical decision task - Dufau, Grainger, & Ziegler, 

2012). A common explanation for priming effects is based upon activation by the prime 

stimulus of representations that are subsequently involved in processing of the target word. In 

other words, prime processing leads to pre-activation of representations shared with the 

target, which generally results in facilitatory effects on target word recognition, such as seen 

with transposed-letter primes (Perea & Lupker, 2004; Schoonbaert & Grainger, 2004) and 

relative-position primes (e.g., Grainger, Granier, Farioli, Van Assche, & van Heuven, 2006; 

Peressotti & Grainger, 1999). Figure 1 illustrates how common and overlapping 

representations can activate multiple words which share letters. Inhibitory priming also exists 

where primes can hinder access instead of facilitating it (Davis & Lupker, 2006; Segui & 

Grainger, 1990).   

 

Taken together, the evidence for transposed-letter priming and relative-position priming 

suggests that letter order is important, but only to a certain extent. In order to account for this 

attested flexibility in letter position coding, a number of models of visual word recognition 

have proposed an intermediate level of orthographic representation lying in between a 

location-specific (i.e., retinoptopic) coding of letters and location-invariant word 

representations. One such model, the Grainger and Van Heuven (2003) model of 

orthographic processing shown in Figure 1, was the inspiration for a connectionist model in 

which neural networks learned to map location-specific letter identities (letters coded as a 

function of their location in a horizontal array) onto location-invariant lexical representations 

(Dandurand, Grainger, & Dufau, 2010a). The model, trained using 1179 words of four letters, 

successfully captured transposed-letter and relative-position priming effects. Intermediate 

representations coded at the hidden layer of these neural networks were found to have two 

important characteristics (Hannagan, Dandurand, & Grainger, 2011). First, letters appeared to 

be represented in a semi-location-invariant fashion. Second, representations were well-

characterized as a holographic overlap coding in which small changes of the inputs resulted 

in small differences in hidden layer representations. More specifically, differences in patterns 

of hidden layer activations were monotonically related to differences in identity and position 

of input letters. For example, patterns of hidden unit activations were more different for a 

two-letter substitution (POLL vs. BULL) than a single letter substitution (PULL vs. BULL) 

when position in the horizontal array was kept constant. Furthermore, larger differences were 

observed in patterns of activity when an input string was moved by two positions in the 

alphabetic array (#THAT##### vs. ###THAT###) than moved by a single position 

(#THAT##### vs. ##THAT####).  
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Figure 1 - Grainger and van Heuven's model of orthographic processing. Visual features of 

some printed word activate location-specific character detectors along an alphabetic array. 

These letter identity informations are then combined into a relative position code. This code 

in turn controls the activations of whole-word orthographic representations (O-words) via 

bi-directional connections. 

 

Our previous work  (Dandurand et al., 2010a) showed that, in principle, connectionist models 

could capture important benchmark phenomena of skilled reading. It showed that learning 

location-invariant lexical representations leads naturally to the development of a flexible 

relative-position code. However, the model made an untested implicit assumption that readers 

learn to directly map location-specific letters to lexical representations. An alternative 

possibility is that readers learn two distinct levels of representation: first, a word-centered 

letter level that abstracts away the absolute position of letters on the retina, but maintains 

within-word positioning, and second, a location-independent lexical representation level. 

Also, the simulation setup was too limited and artificial to be deemed realistic, namely 

because words were too short (4 letters) and all letters were equally visible, which is 

unrealistic for human readers (Stevens & Grainger, 2003). 

 

1.1. Research questions  

In the current work, we explicitly test the hypothesis of a word-centered level of 

representation. We also present key improvements aimed at making simulations much more 

realistic: (1) inclusion of realistic visibility constraints; (2) use of longer words (7 letters); 

and (3) testing models against real data from masked priming experiments. The use of seven 

letter words is particularly attractive because: (1) a rich collection of experimental data exist 

on priming using this word length, and (2) seven letters allow for fine-grained manipulation 

of priming phenomena, that is, there are more possibilities for changing letter order in a 

graded fashion with 7 than with 4 letters. We train networks using the 2000 most frequent 
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words in a French lexicon
2
 to match the language of the experimental data to be simulated, 

and this change in language also allows us to verify that the Dandurand et al. (2010a) results 

replicate in a different language. 

 

In the current paper, we thus ask: (1) if a model with an explicit level of representation for 

word-centered letters performs better than a model that does not have such a level of 

representation; (2) if the simulations of priming effects replicate in a more realistic setting; 

and (3) what kinds of representations the hidden layer develops, namely whether holographic 

overlap coding is a suitable descriptive model of what networks have learned, and how such 

representations explain how networks can discriminate anagrams. 

 

The present models, like the ones from previous work, are fully stimulus-driven by the 

presence of letters at specific positions, that is, a model of early visual processing. There are 

no top-down effects of other language-related processing such as phonology, semantics, or 

other high-level cognitive processes such as attention or working memory. For this reason, 

when evaluated on their ability to simulate priming effects, model performance is pitted 

against experimental results for masked priming. Masked priming occurs without awareness 

and is thought to be essentially stimulus-driven and mediated by early visual processes.  

 

The present work rests on a long tradition of connectionist models for language processing 

which have roots in the seminal work in Parallel Distributed Processing (Rumelhart, 

McClelland, & PDP research group, 1986). Connectionist systems have successfully 

modelled a number of phenomena related to language, including past-tense formation (e.g., 

Marchman, 1993); pronunciation of text (e.g., Sejnowski & Rosenberg, 1987); and learning 

of grammar (e.g., Elman, 1991). Along with Dandurand et al. (2010a), the present work on 

visual word processing is one of the first that concerns specifically the mapping of position-

specific letters onto abstract and position-independent lexical identities (i.e., words). As such, 

it addresses the important question of the nature and characteristics of the internal 

representations that develop during the process of learning such a skill. 

 

2. Methods 

2.1. Network topologies 

All simulations use standard feedforward neural networks. As mentioned, our previous work 

(Dandurand, et al., 2010a; Dandurand, Hannagan, & Grainger, 2010b) made an implicit 

assumption that learning lexical representations from location-specific letters is accomplished 

directly as a one-step process. The present work allows us to compare this hypothesis with an 

alternative hypothesis according to which an intermediate level of representation exists and 

consists of word-centered letter representations. 

 

We thus compare three model topologies for learning the task (see Figure 2). The objective is 

to determine which model simulates human performance more closely. In the zero-deck 

topology, networks learn to map location-specific letters onto abstract lexical representations, 

or words, without a hidden layer. The one-deck topology is similar to the zero deck, but has a 

hidden layer. Finally, in the two-deck topology, two networks are stacked: a first network 

learns to map location-specific letters onto word-centered letters, and a second network maps 

                                                      
2
 This is the largest number of words that could reasonably be used in the simulations given the available 

computer memory and processing speed. 
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those word-centered letters onto lexical representations. While word-centered letters code for 

the position in the word (i.e., a slot-coded representation), they abstract away from the 

position on the retina.  

 

 

Three topologies Matrix of connection
Weights:

“silence” “console” …

####MACHINE##

Zero-deck
“silence” “console” …

####MACHINE##

“silence” “console” …

####MACHINE##

Hidden layer

One-deck Two-deck

Hidden layer

MACHINE

Word-centered 
letters layerOutput layer:

Lexical units

Input layer: 
Location-specific letters

 

Figure 2 – Comparison of three topologies for learning lexical representations from 

location-specific letters. The two-deck topology posits an explicit level called “word-centered 

letters layer”, as an intermediate step. 

 

Networks’ units (that is, neurons) are fully connected in a strictly layered fashion. All units 

use sigmoidal activation functions. In one- and the first deck of two-deck networks, the 

number of hidden units is equal to the square root of the number of training patterns rounded 

up to the closest integer, a standard technique also used in previous work (Dandurand et al., 

2010a), yielding 119 hidden units
3
.  To study the robustness of results, we also varied depth 

of training and number of hidden units (see Appendix 1). As shown in Figure 2, zero-deck 

networks and the upper section of two-deck networks contain no hidden layer; they simply 

compose lexical units’ values as a linear combination of input units.  

 

Other work also specifies an explicit level of representation for word-centred letters. For 

instance, Dandurand and Grainger (2008) used cascade-correlation neural networks to map 

position-specific words of four letters onto word-centred representations. These networks 

successfully learned regularities of the word structure (“wordness”). Furthermore, Shillcock 

and Monaghan (2001) also used a similar simulation approach (which they called shift 

invariant identity mapping) to investigate the processing constraints imposed by the visual 

hemifields. They compared a standard backpropagation model with one in which the input 

slot is split at its centre, sending these split inputs to two independent processing streams 

which simulate the visual hemifields. They found that network error was lower for exterior 

letters in the split model, but not lower in a standard non-split model, which suggests that 

                                                      
3
 sqrt(2000 words * 7 positions / word) 
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input splitting could account for the superiority effect of exterior (i.e., first and last) letters of 

words in reading.  

2.2. Letter visibility 

Empirical evidence suggests that not all letters are equally visible when an eye fixation is 

made on text (Stevens & Grainger, 2003), including when strings are composed of a random 

series of consonants (e.g., Tydgat & Grainger, 2009). Two constraints may play a role in 

determining visibility. First, visual acuity depends on retinal position: it is best at the centre 

of the fovea, and degrades as eccentricity increases. Thus, the letter at fixation is the most 

visible. Second, outer letters of words are more visible, which may be explained by the fact 

that crowding is reduced for outer letters compared to inner letters (e.g., Grainger, Tydgat, & 

Isselé, 2010; Tydgat & Grainger, 2009).  

 

In the present work, we use empirical data on within-word visibility from Stevens and 

Grainger (2003) for strings of 7 letters, and different fixation positions. In our models, 

fixations are always made on the central location of the horizontal letter array that simulates 

the retina. Fixation on different letters is simulated by shifting the word in the letter array. 

For example, a fixation on the seventh letter corresponds to an input string of 

SILENCE######; a fixation on the fourth letter to ###SILENCE###; and a fixation on the 

second letter to #####SILENCE#. Figure 3 presents an example of within-word letter 

visibility for a fixation made on the fourth letter. Data for all fixation positions can be found 

in (Stevens & Grainger, 2003).  

 

 

Figure 3 – Letter visibility (probability of correct letter identification) as a function of within-

string position, for a seven-letter string with fixation on the central position (i.e., the fourth 

letter), from the study of Stevens and Grainger (2003). 
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Note that for the two-deck topology, inputs of the second deck -- the word-centred level -- are 

binary (0 and 1) because outputs of the first deck are binary. The visibility constraint is 

applied only to the location-specific letters, and not to the word-centred letters. The rationale 

is that letter visibility is hypothesized to be a perceptual effect related to, namely, visual 

acuity and crowding. In contrast, word-centred letters are abstract cognitive representations 

that are learned as independent of retinal position and visibility at the perceptual level (see 

below for more details on the computation of input values with and without the visibility 

constraint).  

2.3. Other parameters 

2.3.1. Input and output coding 

All input and output values are represented using local coding. For one-deck networks, inputs 

are presented using location-specific letter coding (see Table 1 for an example), and outputs 

are presented using the lexical unit coding (see Table 3 for an example). In contrast, two-deck 

networks have two stacked neural networks. The first one receives location-specific letters as 

inputs, and compute word-centred letters as outputs (see Table 2 for an example). The second 

network takes those word-centred letters as inputs, and generates lexical units as outputs. 

2.3.1.1. Location-specific letter coding 

Words are presented in seven positions along a thirteen-slot alphabetic array; and encoded 

using local coding. Each letter slot is encoded as a vector of 37 values (26 base letters (a to z) 

and 11 accentuated French letters
4
). A vector indicating the presence (target = 1) or absence 

(target = 0) of a given letter is generated. Slots in which no letter is present [0 0 0... 0] 

represent blanks. As illustration, Table 1 presents the encoded pattern for the word SILENCE 

in the central position (###SILENCE###). Other examples of inputs include 

SILENCE######, #SILENCE#####, and ######SILENCE. Elements in this vector of 

binary values are then multiplied by the visibility value for corresponding slots. Visibility 

values used are the letter identification probabilities for given positions in the alphabetic 

array (Stevens & Grainger, 2003) Fixation position is always on slot number 7 (i.e., the 

central position in the array). Networks are presented with a concatenation of the content of 

the table into a 482 bits vector (13 slots x 37 values/slot + 1 bias, always set to 1). 

 

Presence of letter coding (1 bit per letter) 

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z À Â Ç È É Ê Î Ï Ô Û Ü 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                                                      
4
 Which are: à, â, ç, è, é, ê, î, ï, ô, û, and ü 
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Table 1 - Example of a location-specific letters input pattern for word SILENCE presented in 

central position (###SILENCE###). The first column indicates slot position.  

2.3.1.2. Word-centred letter coding 

Coding of word-centered letters is similar to the coding of location-specific letters, except for 

two differences. First, letters are always presented at the same within-word position, that is, 

there is only one possible position. Second, letter visibility is always ideal. As mentioned, 

this choice is justified by the fact that the visibility constraints are likely a low-level visual 

phenomenon. Word-centered coding is a cognitive construction that abstracts away from 

retinal position. As illustration, Table 2 presents the encoded pattern for word SILENCE. 

Networks were presented with a concatenation of the content of the table into a 260 bits 

vector (7 slots x 37 values/slot + 1 bias, always set to 1). 

 

Presence of letter coding (1 bit per letter) 

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z À Â Ç È É Ê Î Ï Ô Û Ü 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 2 - Example of the word-centred pattern for word SILENCE. The first column indicates 

within-word position.  

2.3.1.3. Lexical unit coding 

Lexical units are also encoded using local coding, with each word corresponding to a distinct 

unit. When training networks, a target value of 1 indicates the presence of the corresponding 

word, whereas a value of 0 codes for the absence of the word. Table 3 presents illustrations of 

lexical unit coding. The number of binary values in the vector equals the number of words in 

the training set, here 2000. 

 

Input word Output vector (3 of 2000 shown) 

S I L E N C E 1 0 0 0 0 ... 

L U M I È R E 0 1 0 0 0 ... 

M É L O D I E 0 0 0 1 0 ... 

Table 3 – Examples of lexical unit coding. 

2.3.2. Composition of the training sets  

As mentioned, training sets comprised the 2000 most frequent words from the French lexical 

database Lexique (New, Pallier, Brysbaert, & Ferrand, 2004), in which only lemma forms 

were selected. As mentioned, words are presented at all seven locations (with uniform 

frequency) in the horizontal letter array, for a total of 14000 input patterns. 

 

One of the most difficult aspects of the present task is arguably the segregation of anagrams. 

While regular words can be discriminated on the basis of differences of at least one letter, 

anagram identification must rely solely on the relative position of letters within word. In the 

training set, 3.5% of words have anagrams (N=138), consisting of four triplets (traiter, attire, 
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retrait; étrange, argenté, renégat; respect, spectre, scepter; moindre, dominer, endormi) and 63 

pairs. 

2.4. Network training  

Three networks are trained for each network topology. In each network, connection weights 

are initialized with random values within a range of -0.5 and 0.5. Training is performed using 

a standard gradient descent technique (McClelland & Rumelhart, 1988), more specifically the 

momentum gradient descent technique implemented in the LENS library
5
, and using cross-

entropy as a cost function (Hinton, 1989). For our simulations, we used a learning rate of 0.9 

and a momentum term of 0.2.  

2.5. Computation of output activations 

To compute activation values of lexical units (i.e., output units of the last layer), an input 

word is first converted to a location-specific letter coding (see section 2.3.1.1). Second, the 

visibility constraints are applied by multiplying values in the input vector by the visibility 

value corresponding to the position in the lexical array. Third, activation values of the next 

layer are computed in the standard manner
6
. Note that these activation values are continuous 

and bounded by 0 and 1. In zero-deck networks, there is a single set of weights, and lexical 

unit activation values are thus computed in one phase. In contrast, for one-deck networks, 

two phases are required, that is computation of activation values of the hidden layer units, 

and then activation values of output layer units. 

 

Computation of lexical activation values in two-deck networks is done in two stages. First, 

activations of the outputs of deck 1 are computed in the same way as for one-deck networks. 

These output activations code for the continuous, graded representations of word-centred 

letters (see section 2.3.1.2) as recognized by deck 1. Second, those continuous activation 

values are used as inputs to the deck 2 network, and lexical unit activations are computed as 

the outputs of this second deck. In contrast with training which is performed with idealized 

all-or-nothing (0 and 1) inputs and targets for deck 2, network recall in deck 2 is performed 

with the actual, continuous outputs of deck 1 without any threshold or other transformation. 

 

Finally, an answer is considered correct when the lexical output unit corresponding to the 

target word is activated above a threshold value of 0.9, while all other outputs are activated 

below that same threshold
7
. Networks were trained until they could correctly classify all 

training patterns, that is, reach perfect accuracy. We empirically found that the following SSE 

values yielded such accuracy: 100 for zero-deck networks and for decks 1 and 2 of two-deck 

networks, and 50 for one-deck networks. 

 

2.6. Comparison with previous work 

The current simulations improve upon our previous work (Dandurand et al., 2010a, 2010b). 

Key differences between the current models and previous models are summarized in Table 4.  

                                                      
5
 The LensOSX can be downloaded at: http://hbrouwer.github.com/lensosx/  

and the original Unix version at: http://tedlab.mit.edu/~dr/Lens/ 
6
 By computing the sigmoid-transformed weighted sum of the visibility-scaled input values multiplied by the 

learned connection weights between inputs and outputs. 
7
   This measure is more stringent than the target supremum measure used in (Dandurand, Grainger, & Dufau, 

2010). The target supremum measure quantifies the ability of some input pattern (e.g., a prime) to activate 
the output unit associated with the target word more than any other output unit. However, the measure does 
not enforce a single output to be above threshold. 



Running Head: MODELS OF ORTHOGRAPHIC PROCESSING 
 

11 
 

 

 Current models Previous models 

(Dandurand et al., 2010a, 

2010b) 

Length of training words 7 letters 4 letters 

Training corpus (Lexique: New et al., 

2004) 

(McClelland & Rumelhart, 

1988) 

Number of training words (and thus 

of output units) 

2000 1179 

Language French English 

Proportion of words with anagrams 3.5% 24.0% 

Number of training patterns 14000 8253 

Number of positions in which words 

are seen 

7 7 

Size of alphabetic array 13 10 

Number of letters 37 26 

Number of input units 482 261 

Visibility regime Realistic Perfect 

Zero-deck topology Yes Yes 

One-deck topology Yes Yes 

Two-deck topology Yes No 

Replications per topology 3 1 

Table 4 - Key differences between the current model and previous models (Dandurand et al., 

2010a, 2010b) 

 

3. Results 

3.1. Model evaluation test 1: Discriminating words and nonwords 

The first evaluation test consists in determining how trained networks are able to discriminate 

words from nonwords. Previous work demonstrated that the hidden layer appears critical for 

success on this task (Dandurand et al., 2010b). As reported in the previous section, networks 

are able to detect words, as shown by high accuracies on training word patterns.  

 

To test their ability to also reject nonwords, we use four conditions roughly expected to vary 

in task difficulty
8
 from easy to difficult: random string (e.g., HGTQNUK), single repeated 

letter (e.g., EEEEEEE), double-letter substitution (e.g., SIPENJE), and letter transposition 

(e.g., SILECNE). Random strings should be easily rejected because they generally share very 

few letters with any of the words in the corpus. Nonwords made from a single repeated letter 

should also be rejected easily as they overlap less than 25% with targets
9
, and also because 

the perceptual regularity of the repeated letters is unlike real words. More difficult to reject 

are nonwords built using a double-letter substitution, that is, by changing two letters (position 

and replacement letter identities randomly selected) of a word. They have a 71% (5 out of 7 

                                                      
8
 No experimental data exist that directly pits these conditions against each other. 

9
 Among the 2000 words in the training set, only a single word contains a letter that repeats 4 times 

(SENSASS), 80 words contain a letter that repeats 3 times (e.g., ARRIVER), 1275 have two repeats (e.g., 
PRENDRE), and 644 that have each letter of the word appearing only once (e.g., OUBLIER). 
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letters) overlap with their associated base words
10

. Finally, the letter transposition condition, 

in which letters in positions 5 and 6 are interchanged, should be most difficult to reject. This 

difficulty is reflected in the fact that skilled human readers sometimes mistake these 

nonwords for words, especially when exposure times are short (e.g., Frankish & Turner, 

2007; Grainger, Lété, Bertrand, Dufau, & Ziegler, 2012). 

 

We operationally define word-nonword discrimination as the ability of networks to classify 

or segregate the distributions of word and nonword patterns based on a fixed cutoff value or 

threshold. Given some input pattern, we consider a word as being recognized when its 

corresponding output unit is activated above some threshold. For the four nonword conditions 

here, no word output unit should be above threshold, meaning that no word is recognized. 

Any output unit activated above threshold is a false positive error.  

 

Figure 4 presents details of nonword rejection performance for the three topologies.  

 

Zero-deck One-deck Two-deck 

   

Figure 4 – Correct nonword rejection rates at threshold level 0.9 for the four conditions (RS 

=  Random String (e.g., HGTQNUK), SRL = Single Repeated Letter (e.g., EEEEEEE), DLS 

= Double-Letter Substitution (e.g., SIPENJE), and LT = Letter Transposition (e.g., 

SILECNE)) with standard error bars.  

 

We see that zero-deck networks fail to correctly reject nonwords made of a single repeated 

letter (e.g., EEEEEEE). One-deck networks perform better at rejecting these repeated-letter 

nonwords, but still fail to surpass performance on substitution nonwords. Only two-deck 

networks have the correct pattern of nonword rejection, and also perform the best on 

nonwords made with letter transpositions.  

 

3.2. Model evaluation test 2: Simulating masked priming effects 

Next, we investigate the ability of networks to simulate the pattern of facilitatory priming 

effects observed in humans with the masked priming paradigm. Priming in networks is based 

on the principle that the greater the orthographic overlap between prime and target stimuli, 

the greater the target output is activated. More specifically, priming is operationally defined 

as follows: a word is considered primed by some input if its corresponding lexical output unit 

is activated above some threshold. Thus, rather than measuring the influence of a prime 

stimulus on subsequent target word identification, as in human studies, here we directly 

                                                      
10 In the previous study with four letter words, the correct rejection rate of nonwords was 94.1% (Dandurand, 

Grainger, & Dufau, 2010). These nonwords were generated using a single-letter substitution. As a result, they 
had a 75% overlap (3 out of 4 letters) with a word (e.g., nonword AHLE based on word ABLE). We chose 
double-letter substitutions in the present study to approximately match this degree of overlap.  
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examine how well a given prime stimulus can activate a given target output. Note that the 

thresholds used here differ from those used for word-nonword discrimination tasks. In the 

discrimination task, a higher threshold value (0.9) is used to show that there exists a clear 

activation boundary between words and nonwords that networks can use to classify input 

strings. The threshold value is high to reflect a high confidence that some input string is 

indeed a word, thus reducing false positives errors. On the other hand, in the priming 

simulations presented here, the goal is to identify effects of weaker activations of a prime 

stimulus prior to stimulus classification, so a lower threshold value is used (0.5). In this way 

we measure how well a given prime stimulus can activate a given target output relative to a 

condition where there is no prime and therefore zero target output activation. 

 

3.2.1. Relative-position priming  

Relative-position priming effects are measured under two conditions. In the first condition, 

the first four letters of the target word (1, 2, 3, and 4) are presented as a masked prime. For 

instance, for word SILENCE, the corresponding prime is SILE. In the second condition, odd 

letters are used (1, 3, 5 and 7). For word SILENCE, this prime corresponds to SLNE. 

 

Results are presented in the left column of Figure 5. Data for relative-position priming in 

humans are from Table A2 (p. 883) in Grainger et al. (2006). Priming effects in humans is 

measured as the improvement (shortening) in response time when a target is preceded by a 

masked prime compared to a control condition. Note that the priming effect in humans is 

significant (p<0.05) for the condition 1234, but not for 1357, showing larger priming with 

letters 1234 than with letters 1357. Therefore, in models we expect priming with letters 1234 

to be large, whereas priming with letters 1357 should be smaller. 

 

As we can see in Figure 5, model evaluation test results suggest that the zero-deck and the 

two-deck networks successfully simulate the larger priming effect with primes formed of 

letters 1234 than 1357, whereas one-deck networks do not. 

3.2.2. Transposed-letter priming 

Transposed-letter priming effects are measured under two conditions. In the first condition, 

letters at positions 4 and 5 are transposed, yielding a prime composed of letters 1235467. For 

instance, for word SILENCE, the corresponding prime is SILNECE. In the second condition, 

letters 4 and 5 are replaced with unrelated letters, yielding a prime of form 123DD67. For 

word SILENCE, an example of prime would be SILOPCE. 

 

Results are presented in the right column of Figure 5. Data for transposed-letter priming in 

humans are from Tables 4 and 5 in Schoonbaert & Grainger (2004). Note that the priming 

effect for condition 1235467 was shown to be significant (p<0.001) whereas priming with 

123DD67 was not (p>0.05), suggesting that priming effects are larger with 1235467 than 

123DD67. Test results suggest that all three network topologies successfully simulate the 

larger priming effect for condition 1235467 than 123DD67. 

 

 

 

 Relative-position priming Transposed-letter priming 
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Figure 5 – Relative-position and transposed-letter priming results comparing human with 

model performance for the three different topologies, with standard error bars. 

 



Running Head: MODELS OF ORTHOGRAPHIC PROCESSING 
 

15 
 

3.3. Summary of evaluation tests 

A summary of the performance evaluation tests is presented in Table 5. As we can see, only 

the two-deck model simulates all three phenomena covered. Before we can conclude the 

model comparison analysis, we need to take into account another important factor: model 

size. 

 

Model Word-nonword 

discrimination 

Relative position 

priming 

Transposed letter 

priming 

Zero-deck No Yes* Yes 

One-deck No No Yes 

Two-deck Yes Yes Yes* 

Table 5 – Summary of performance evaluation tests indicating if models successfully simulate 

human performance (Yes) or not (No). *: the magnitude of the effect is smaller, but the 

qualitative pattern is correct. 

3.4. Model size 

Conventional statistical wisdom states that the capacity of some model to cover some pattern 

of result has to be pitted against the number of degrees of freedom that the model has. 

Preferred models provide a good fit to the experimental data while having as few degrees of 

freedom as possible. 

 

For our models, we operationally define degrees of freedom as the number of trainable 

connection weights in a network. Zero-deck networks have 964 000 connection weights (482 

inputs x 2000 outputs); one-deck networks have 297 358 (482 inputs x 119 hiddens + (119 

hiddens + 1 bias) x 2000 outputs). Finally, two-deck networks have only 72 198 units (482 

inputs x 119 hiddens + (119 hiddens + 1 bias) x 7 letters + 7 letters x 2000 words).  

 

This analysis provides a converging picture about the superiority of the two-deck topology. 

Not only does it best fit the pattern of experimental data, it also does it with the fewest 

degrees of freedom
11

. 

4. Analysis of internal representations 

As we have seen, despite some differences in their ability to reject nonwords and to simulate 

priming effects, all three network topologies were able to learn the task to a near-perfect 

accuracy. We now investigate what knowledge networks acquire as they learn to solve the 

task, or in other words, what internal representations do networks develop? What are they 

encoding for? And also, how does this encoding allow networks to discriminate or segregate 

anagrams? 

 

Analyzing neural network representations can be challenging due to the distributed nature of 

the knowledge in large matrices of connection weights.  Can we find patterns or regularities 

in these numerous connections of our trained networks? In other words, can we describe the 

processing that connection weights collectively accomplish using simple, rule-like or 

mathematical terms? 

 

                                                      
11

 Further statistical tests are unnecessary here because there is no compromise or tradeoff between size and 
quality of fit (i.e., performance). A better fit with a smaller model is clearly the best option. 
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Our approach consists in two kinds of analyzes. On the one hand, we analyze the pattern of 

activation at the hidden layer for network topologies that contain such a hidden layer, that is, 

the one-deck network and the lower part of the two-deck network. The rationale is that 

hidden layer activations summarize the processing performed by the input-to-hidden 

connection weights. On the other hand, in the absence of a hidden layer, we need to directly 

look at the matrix of connection weights for the zero-deck network and the upper layer of the 

two-deck network. 

4.1. Zero-deck topology 

Intuitively, zero-deck networks should use letters present in the target word as positive 

evidence for the target. In contrast, letters absent from the target provide negative evidence 

for the target. In our models, this translates into large connection weights from target words 

to letters present in them to enforce that these letters activate the target, while small or 

negative weights to letters absent from targets enforce non-activation or inhibition of the 

target. For instance, for target word SILENCE, letter S provides positive evidence and should 

be associated with a large positive connection weight, whereas letter K provides negative 

evidence and should be associated with a small or negative connection weight.  

 

It is important to note that letters present in the target provide positive evidence at all 

positions in the horizontal array where they were trained. Networks have no hidden layer to 

consolidate signals from different input positions; therefore, all letters provide independent 

votes for the target. For example, both S############# and  ######S###### are evidence 

for word SILENCE because the network learned to recognize SILENCE###### and 

######SILENCE as instances of word SILENCE. Pattern ######S###### is also evidence 

for word CONSOLE because the network has learned pattern ###CONSOLE###. Letters 

near or at the extremities of the array may not be evidence for some target word, for instance 

the word SILENCE was never trained with a S at the last slot (############S). 

 

We hypothesize that weights for letters present in the target are larger than those absent from 

the target, irrespectively of letter position for the positions trained. Figure 10 shows 

histograms of connection weights’ magnitudes, normalized by the number of weights in each 

category
12

. As we can see, the hypothesis is confirmed: weights are on average larger for 

letters present in the target than letters absent. 

 

                                                      
12

 There are much fewer connection weights for letters present in the target word than weights for letters 
absent. Normalization aims at equating the areas under the two histogram curves. 
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Figure 6 – Histogram of connection weights in the zero-deck networks. Only non-empty bins 

are presented, in increasing order of weight magnitude. 

 

What we have seen so far is that presence of the target letters provides evidence for some 

target largely irrespective of where they occur. For example, letters (in alphabetical order) a, 

e, i, r (x2) and t (x2) provide evidence for words traiter, attire, and retrait.  We next need to 

address how the zero-deck networks manage to discriminate anagrams since they cannot 

directly capitalize on letter position.  To gain some insight into the segregation of anagrams, 

we compute the average connection weights for letters in the target only as a function of 

within-word position (also called word-centered position) and slot in array. Results are 

presented in Figure 7, for all words in the training set, and for the small subset of words that 

have anagrams. 

 

All words Anagrams only 

 
 

 

Figure 7 – Color-coded average magnitude of connection weights as a function of within-

word position and location in the input slot. Results are presented for all words (words with 

and without anagrams) and specifically for words that have anagrams. 
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As we can see, there is a negative correlation between within-word position and location in 

slot for the first letter in the word (position 1), that is, connection weights decrease with the 

location in the slot. In contrast, the correlation is positive for the last letter (position 7), that 

is, weights tend to increase with location in slot. To test for this interaction, we performed a 

two-way ANOVA with within-word position and location in slot as two repeated factors. 

This within-word position by location in slot interaction is significant, F(72,1928) = 979, 

p<0.001. Main effect of position, F(12,1988)=1984, p<0.001, and of location, 

F(6,1994)=354, p<0.001, are also significant.  

 

We can now understand how zero-deck networks segregate anagrams. Although they cannot 

use precise location of letters, this scheme allows them to weigh more the letters that appear 

toward the beginning of some word when they also appear towards the beginning of the slot, 

and vice-versa for letters that appear toward the end of the word, which is sufficient to 

discriminate between anagrams. For example, letter A is more likely to occur toward the 

beginning of the slot (input array) for word attire than in word retrait. In contrast, letter E is 

more likely to occur towards the end of the array for word attire than for word retrait. By 

capitalizing on this difference, networks can appropriately activate attire more than retrait 

when A precedes E in the array, and the opposite when A follows E. Note that this scheme 

works because letters are more likely to occur in some locations than others due to non-

uniform training. In the training set, letters that occur early in words are more likely to also 

occur early in the array, and vice-versa. In a hypothetical circular array without a beginning 

and an end, this scheme would not work. 

 

In sum, the processing strategy or coding scheme that zero-deck networks develop appears to 

be primarily based on the number of letters shared between inputs and targets independently 

of position. This implements a sort of voting scheme in which input letters provide 

independent votes for the target words, positive votes for words that contain the letters and 

abstentions or votes against the words that do not contain these letters. Letter presence is then 

modulated by the interaction between location and position, which allow networks to use the 

correlation between location and position to factor in some information about the relative 

position of letters, allowing anagrams to be discriminated. This coding scheme also accounts 

for the priming effects: larger priming as the number of letters shared between primes and 

targets increase, and larger priming as the agreement increases between the order of letters in 

the prime and in the target. 

4.2. One-deck topology 

For the one-deck networks, we analyze the activations at the hidden layer. Those activations 

summarize the processing performed by the input-to-hidden connection weights. Previous 

analyses of a one-deck network learning four letter words in a ten-slot array uncovered two 

important characteristics of the coding at the hidden layer (Hannagan et al., 2011). First, 

coding was found to be primarily letter-based in a semi-location-invariant fashion, with no 

evidence for the coding of bigrams, i.e., letter pairs. Second, representations at the hidden 

layer were well-characterized as a holographic overlap coding in which small changes of the 

inputs resulted in small differences in hidden layer representations. More specifically, 

differences in patterns of hidden layer activations were monotonically related to differences 

in identity and position of input letters that is, a proximity effect. In overlap coding, this is 

explained by using a probability function for letter position rather than a fixed value. The 

probability is highest for the position where the letter is actually presented and then drops off 

in a monotonic fashion as a function of distance from actual presentation (Gomez, Ratcliff, & 

Perea, 2008). 
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For the present networks, we expect to observe a similar coding strategy. First, we test the 

hypothesis that coding is primarily letter based, by calculating distances between activation 

patterns at the hidden layer for all letters (including accentuated) and all positions (i.e., 

A############, #A###########, ..., ############A, B############, ..., 

#######B#####, ... ############B, ..., ###K#########, ..., ##########S##, ... 

#######Z#####, ... ############Ü). If letter coding is used at the hidden layer, patterns of 

activations should better cluster (i.e., differences should be smaller) for the same letter at 

different position (e.g., #######B##### vs. ############B), than any pattern of any other 

letter (#######B##### vs. ##D##########). As we can see in the first row of Figure 8, the 

hypothesis is confirmed, especially for letters which are more frequent (the effect is smaller 

in the lower-right quadrants of the graphs, corresponding to accentuated letters which are 

relatively infrequent). 

 

Second, we test for the proximity effect by plotting differences in patterns of activity for 

some given letter as a function of position in the array (averaged across all letters). Similarity 

between activation patterns should be inversely related to distance. As we can see in the 

second row of Figure 8, the hypothesis is also confirmed. 

 

Third, we investigate how word representations are built. We hypothesize that they are 

simply built as a linear combination of letter patterns. For instance, the activation pattern for 

###SILENCE### is equal to ###S######### + ####I######## + #####L####### + 

######E###### + #######N##### + ########C#### + #########E###. Using a linear 

regression of word patterns against their component letter patterns, we find that a fair amount 

of variance can be explained by this scheme (R
2
 = 0.47, p <0.001). Part of the departure can 

probably be explained by the fact that some words are easier to recognize than others based 

on their constituent letters, and that some letters may be ignored or downplayed in forming a 

representation for the word. For instance, for words that contain infrequent letters that are 

sufficient to uniquely identify it, networks may capitalize on these infrequent letters, largely 

ignoring frequent letters.  

 

Finally, we test the holographic overlap coding hypothesis by computing the correlation (R) 

between two sets of distances: first, the distances between activation patterns elicited by a 

number of input strings presented to the network, and second, the distances between 

holographic overlap coding patterns for the same strings. We find near-perfect agreement 

with the pattern of activation of hidden units (R = 0.96). 

 

 

Letter cluster Proximity effect 
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Figure 8 - Results of analyses of internal representations at the hidden layer of one-deck 

networks: letter cluster, and proximity effect.  

 

In sum, the same conclusions about one-deck network coding can be drawn as previously 

reported (Hannagan et al., 2011): letters are represented in a semi-location independent 

fashion (letter cluster and proximity effect), and a fair amount of variance of the activation 

patterns for words can be explained by a simple linear combination of individual letter 

patterns. Hidden pattern activations are in near-perfect agreement with holographic overlap 

coding.  

 

4.3. Two-deck topology 

We now turn to an analysis of the two-deck networks; performing separate analyses for the 

two decks.  

4.3.1. From location-specific letters to word-centered letters 

The lower deck performs the mapping of location-specific letters to word-centered letters. 

Although the task differs in terms of outputs units, we hypothesize that the representations at 

the hidden layer will be similar to those of the one-deck models. More precisely, we expect to 

find semi-location invariant letter-based representations subject to the proximity effect. We 

also expect that variance of activation patterns at the hidden layer (R
2
) can be explained by 

letter combination (e.g., SILENCE = S############# +  #I############ + 

##L##########, …) and holographic overlap coding. Results are presented in Figure 9. 

 

 

Letter cluster Proximity effect 
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Figure 9 - Results of analyses of internal representations at the hidden layer of lower decks 

of two-deck networks: letter cluster, and proximity effect. 

We find a good correlation between patterns of activation at the hidden units and holographic 

overlap coding (R=0.90). However, the hypothesis that word patterns are built as linear 

combinations of letter patterns does not explain much of the variance (R
2
=0.25). 

 

In sum, only the holographic overlap coding hypothesis was confirmed. For the rest, the 

coding is more difficult to interpret, with no clear letter-based coding, nor proximity effect. 

The authors have performed a number of additional analyses looking for patterns and abstract 

explanations, all of which have remained unfruitful. It may be that processing in the lower 

decks of the two-deck networks cannot be described in simple terms (i.e., the weight matrix 

itself is the simplest explanation), or maybe future work will reveal some pattern.  

4.3.2. From word-centered letters to lexical units 

Finally, we turn to the analysis of the upper deck of the two-deck networks. The task of the 

network is to map word-centered letters onto lexical output units. This task resembles the one 

performed by zero-deck networks, but with an important difference: position of letters in the 

seven-slot long array of word-centered letters is fixed and therefore directly informative. For 

example, letter S for word SILENCE is always seen at position 1. As a consequence, letter S 

at the fourth slot position is positive evidence for word CONSOLE, but negative evidence for 

word SILENCE. We therefore hypothesize that connection weights are larger for letters at the 

correct position than any other weights (letters absent from the target and letters present but 

at an incorrect location). The histograms presented in Figure 10 confirm this hypothesis. 
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Figure 10 – Histograms of connection weights for the upper section of the two-deck network. 

Only non-empty bins are presented, in increasing order of weight magnitude. 

 

Processing in the upper decks of the two-deck networks is therefore straightforward to 

interpret. With large connection weights, letters at the correct positions increase target word 

activation, whereas everything else is either ignored or inhibits the target. 

5. General discussion 

To summarize the results, the three topologies studied (zero-, one- and two-deck) were able 

to learn the mapping task from location-specific letters onto abstract lexical units to a near-

perfect accuracy, including the discrimination of anagrams. Networks generally performed 

well at rejection of nonwords, but only the two-deck topology correctly rejected strings of 

repeated letters more readily than single letter substitutions, which is what we expect from 

skilled human readers. Thus, among the three topologies studied, the two-deck topology best 

captures human performance, and is thus the most adequate cognitive model. It is also the 

model with the fewest degrees of freedom, as measured by the number of trainable 

connection weights.  

 

Except for the relative-position priming effect in the one-deck networks, networks showed 

the correct pattern of relative-position and transposed-letter priming effects. These effects can 

be explained by the flexible orthographic representations schemes that networks developed. 

In the case of the zero-deck networks and the upper deck of the two-deck networks, the 

scheme is based on presence of the letters in the target word: letters present in and absent 

from the target word counting, respectively, as positive evidence (with positive connection 

weights) and as negative evidence or abstention (small or negative connection weights). 

Anagram segregation in the upper deck of the two-deck networks is straightforward because 

word-centered letters are in fixed position. In contrast, zero-deck networks include a bias to 

weigh more letters’ votes when their positions in words match location in the array, allowing 

them to segregate anagrams. For one-deck and the lower deck of two-deck networks (see 

Table 6 for a summary), we found a large agreement between patterns of activation at the 

hidden layer and holographic overlap coding. While a finer description of network processing 

remains elusive for the lower deck of the two-deck network, processing in one-deck networks 

can be interpreted as implementing letter-based coding where words are represented as linear 
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combinations of letter representations. Results of the one-deck networks replicate those from 

earlier studies (Hannagan et al., 2011), suggesting that representations learned at the hidden 

layer are robust. More specifically, the very same representations were found with a different 

set of simulation parameters, namely word length, word count, and language. 

 

Characteristic One-deck topology Two-deck topology 

Letter-based coding Yes No 

Proximity effect Yes No 

Word representations approximately equal to 

linear combinations of letter representations 

Yes No 

Holographic overlap coding Yes Yes 

Table 6- Summary and comparison of hidden layer representations in the one- and the two-

deck networks 

 

The triangle model and its successors (e.g., Harm & Seidenberg, 2004; Plaut, McClelland, 

Seidenberg, & Patterson, 1996; Seidenberg & McClelland, 1989) propose an overall 

cognitive architecture for reading, including not only orthography, but also phonology and 

semantics. In contrast, our model is exclusively concerned with orthographic processing. We 

are, of course, well aware of the evidence for an early involvement of phonological 

representations during silent word reading (e.g., Grainger & Ferrand, 1996; Grainger, 

Kiyonaga, & Holcomb, 2006). The present modeling work should therefore be seen as an 

attempt to capture one key component of the overall reading network as described in the 

triangle model and alternative theoretical frameworks such as the bi-modal interactive-

activation model (BIAM: Diependaele, Ziegler, & Grainger, 2010; Grainger & Holcomb, 

2009) and other dual-route models (DRC: Coltheart, Rastle, Perry, Langdon, & Ziegler, 

2001; CDP+: Perry, Ziegler, & Zorzi, 2007). This allows us to focus on what could be 

considered to be the “hard problem” in visual word recognition: that is how location-specific 

visuo-orthographic information is transformed into a location-invariant orthographic 

representation. In this respect it is important to note that computational models that attempt to 

capture the overall reading network (triangle model, DRC, CDP+, BIAM) all use some form 

of word-centered letter representation as input. 

 

5.1. Lexical decision 

In the present paper, we have been careful to use the term word-nonword discrimination 

because we are not claiming that networks implement a complete model of lexical decision 

(see Dufau et al., 2012 for a recent example). Still, rejecting strings of letters as nonwords is 

not trivial because networks never see counter-examples; they are always trained with 

positive evidence for words, and thus may be expected to over-generalize. 

5.2. Robustness of results 

The same pattern of results was robustly found for different depths of learning (Appendix 1), 

number of hidden units (Appendix 2) and cost functions (Appendix 3), with only one 

exception relative to the influence of the number of hidden units, to be discussed below. 

Also, previous results obtained with zero- and one-deck networks (Dandurand et al., 2010a, 

2010b) trained with four letter words and perfect letter visibility were replicated here with 

seven-letter words, realistic letter visibility, and a larger vocabulary. Furthermore, we found 

that zero- and one-deck networks developed the same internal representations when learning 

four and seven-letter words. The principles uncovered in the section on the analysis of 
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internal representations are general, and should readily generalize to more realistic training 

sets containing more words and words of different lengths. The failure of the one-deck model 

with more hidden units to reject repeated letter nonwords (see Appendix 2) suggests that the 

greater number of hidden units encourages a more location-specific coding of letter identity 

which more closely resembles the input coding. In this way, with more hidden units the one-

deck network begins to resemble the zero-deck network (compare Figure 12 with Figure 4). 

 

5.3. Evolutionary argument for reading 

Dehaene and Cohen (2007) have argued that reading is too recent in evolutionary time to 

have prepare us with specific adaptations for visual word recognition. Instead, they propose 

the neural recycling hypothesis: cultural learning in humans, including reading, relies on 

reconverting pre-existing cerebral predispositions for novel use, within what is possible given 

the strong genetic constraints on cerebral structures. More specifically, an area called the 

"visual word form area" (VWFA) is consistently activated during visual word recognition 

(Dehaene, Le Clec’H, Poline, Le Bihan, & Cohen, 2002). Today any theory on how humans 

can recognize words should therefore be informed by, and consistent with, what has been 

firmly established about the organization of the VWFA. Our comparison of several models 

ultimately favors the deepest hierarchical network, which displays a total of 4 layers and 

which involves a transition from a location specific level to a location invariant but position 

specific level. This is consistent both with experimental constraints on location specific and 

position specific levels of representations in this region (Dehaene et al., 2004), and more 

generally with empirical results demonstrating that the VWFA is organized in a hierarchy of 

levels (Vinckier et al., 2007). One finding of the later study that is not consistent with our 

modeling work is that the hierarchical organization observed experimentally involves a 

succession of detectors of increasingly large letter combinations. We speculate that the full 

connectivity between any two layers in our models may be the reason why the 

backpropagation algorithm consistently finds a way to solve the task using letter-based 

schemes, and that this option would disappear if one was to introduce sparse, local 

connectivity and spatial considerations in these models. It would be interesting to carry out 

further modeling work with such local models to investigate whether they exhibit the letter 

combination detectors that have been theoretically anticipated and experimentally supported 

by several groups (e.g., Binder, Medler, Westbury, Liebenthal, & Buchanan, 2006; Tydgat & 

Grainger, 2009; Vinckier, Qiao, Pallier, Dehaene, & Cohen, 2011). 

 

5.4. Word-centered orthographic representations 

In our simulations, two-deck models with their explicit level of word-centered letters better 

matched human ability at word-nonword discrimination. This suggests that such word-

centered letter representations, or some variant thereof, might well be an indispensable 

ingredient of skilled orthographic processing in humans. These results further suggest, as 

mentioned above, that indeed the “hard problem” in orthographic processing might well be 

understanding how such word-centered sublexical orthographic representations are learned 

from location-specific visuo-orthographic input representations. 

 

One of the objectives of modeling skilled reading is to understand how abstract semantic 

representations are built upon simpler representations all the way down to contrasts on the 

retina which are, by necessity, location-specific (retinotopic). Representations should emerge 

without any explicit external intervention, presumably using a combination of learning and 

constraints (structural, connectivity, etc. designed to mimic genetic and other biological 
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constraints). While this goal is ambitious and complex, progress can be made, and has 

actually been made, using simplifications that involve explicitly imposing certain 

representations at some levels. As mentioned, models of the triangle tradition use such 

localist, word-centered letters as inputs. More generally, models of orthographic processing 

typically assume that letter detectors exist before the inputs of the model, impose localist 

representations for lexical units at the outputs, and impose representations that use some form 

of word-centered sublexical orthographic representation (spatial coding: Davis, 2010; overlap 

coding: Gomez et al., 2008; open bigrams: Grainger, 2008; Seriol: Whitney, 2001), while 

abstracting away from retinal location.  

 

Having to explicitly impose the level of word-centered sublexical orthographic 

representations is presently a limitation of our model,  as well as of other computational 

models (e.g., Shillcock & Monaghan, 2001, and models of the triangle tradition and different 

types of dual-route model). Future work will explore how models can build or learn all 

representations by themselves. Models that combine unsupervised and supervised learning 

appear especially attractive (e.g., contrastive backprogation: Hinton, Osindero, Welling, & 

Teh, 2010). Despite this limitation, we found that when imposing the constraint of word-

centered letters, the pattern of results is more consistent with expert human readers. This is 

consistent with the successes of the triangle-based models at cognitive modeling that are 

based on word-centered letters, and can be interpreted as a prediction of our model for a level 

of representation to be found in the brain. More generally, we have shown that neural 

networks can learn location-invariance (something necessary to explain how skilled readers 

cope with variability in precise location of eye fixations on words), either when directly 

learning lexical representations or when learning word-centered letters, something that 

models of the triangle tradition have sidestepped by taking word-centered letters as inputs. 

 

Becoming a skilled reader clearly involves a long period of learning in children. Our model 

shows how connectionist models can take location-specific letters and learn to map them on 

to lexical units, i.e., perform word recognition. While the mapping is learned in our model for 

simplicity, the same functional processing (including the appropriate representations) could 

also be achieved with additionally imposing system-wide constraints (e.g., genetic). From a 

neurological perspective, skilled readers get location-specific contrasts on their retinas as 

inputs. Future work is necessary to complete lower-level processing, namely how retinal 

contrasts can be mapped onto word-centered sublexical orthographic representations. 

 

Finally, one reason for why the zero-deck and one-deck networks performed less well than 

the two-deck network, might be that they are trying to do too much with too little hierarchical 

structure. This therefore points to hierarchical models going beyond standard 3-layered 

(input, hidden, output) structure as one promising avenue for the future modeling of visual 

word recognition. 

 

5.6. Future directions 

As future directions for this line of research, models could implement receptive fields. This 

would make them more biologically plausible. The current fully-connected networks (e.g., 

every hidden unit is connected to every input unit) implement a letter-based overlap coding 

scheme, with no evidence for coding of open bigrams (Hannagan et al., 2011). Structural 

constraints that have been hypothesized independently by several researchers (e.g., Whitney, 

2001; Grainger, Granier, et al., 2006) may be essential for enforcing the coding of 

combinations of letters such as bigrams. 
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Another known plausible biological constraint absent from the present models is 

stochasticity. In future models, noise could be added at various places in the networks (e.g., 

inputs, connection weights, transfer functions).  

 

Furthermore, networks could be trained with a more realistic regime based on word 

frequencies, rather than a uniform word frequency (see Dufau et al., 2010, for an application 

of this kind of training regime with self-organizing maps, and Glotin et al., 2010, for an 

application with ART (Adaptive Resonance Theory) networks). The training regime could 

also reflect a realistic distribution of fixation positions, rather than using a uniform 

distribution of fixations, and words of different lengths. Ultimately, the goal would be to train 

models with a lexicon reflecting a realistic number of words known by skilled human readers. 

 

Finally, the best of the three models proposed, the two-deck topology, supposes an explicit 

level of representation for word-centered letters, rather than direct learning of lexical 

representations from location-specific letters. The model thus predicts that humans develop 

an explicit level of representation for word-centered letters as they learn to read. Future 

experimental work could attempt to directly test this prediction. 
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7. Appendix - Empirical study of robustness of results 

 

To verify the robustness of results, we varied depth of training and number of hidden units.  

7.1. Appendix 1: Depth of training 

 

In the simulations reported in the main text, we used a target SSE value of 50 because it lead 

to sufficient training to effectively reach 100% accuracy on the criterion given in section 2.4. 

Here, we train a one-deck network of 119 hidden units, simulate early stopping by reporting 

performance at SSE levels ranging from 10000 down to 50 (yielding accuracies ranging from 

1% to 100%). Results are presented in Figure 11. While the effects naturally get larger with 

increased training, the patterns of results are consistent across depths of training, namely the 

pattern of discrimination (RS > DLS > SRL > LT), of relative-position priming (contiguous 

letters 1234 < non-contiguous letters 1357), and of transposed-letter priming (central letters 

from the same word SILNECE > central letters from a different word SILOPCE).  

 

SSE = 10000 -- Accuracy = 1.9% 

   
SSE = 8000 -- Accuracy = 4.1% 

   
SSE = 4000 -- Accuracy = 29.7% 

   
SSE = 3000 -- Accuracy = 49.5% 
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SSE = 2000 -- Accuracy = 77.4% 

   
SSE = 1000 -- Accuracy = 98.2% 

   
SSE = 500 -- Accuracy = 99.7% 

   
SSE = 100 -- Accuracy = 99.95% 

   
SSE = 50 -- Accuracy = 100% 
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Figure 11 - Patterns of results at different depths of training. Results are reported in three 
columns:  Left: word-nonword discrimination; Centre: relative-position priming and Right: 
transposed-letter priming. 
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7.2. Appendix 2: Larger number of hidden units 

 

Second, we trained a one deck network with ten times the square root of the number of 

training patterns. Here, that means 1190 hidden units. As can be seen in Figure 12, patterns of 

results are similar, except for the rejection rate of strings of single letter which is worse with 

the increased number of hidden units. 

 

1190 hidden units 

   
119 hidden units 

   

Figure 12 - Patterns of results comparing one-deck networks containing 119 and 1190 
hidden units. Results are reported in three columns:  Left: word-nonword discrimination; 
Centre: relative-position priming and Right: transposed-letter priming. 
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7.3. Appendix 3: Using SSE instead of cross-entropy as a cost function 

Finally, we compare one-deck networks trained with SSE as a cost function to minimize 

rather than cross-entropy. As can be seen in Figure 13, patterns of results are identical. 

 

SSE (sum of squared errors) 

   

Cross-entropy 

   

Figure 13 - Patterns of results comparing one-deck networks trained using SSE and cross 
entropy as cost functions. Results are reported in three columns:  Left: word-nonword 
discrimination; Centre: relative-position priming and Right: transposed-letter priming. 
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